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The alternating method is an algorithm for obtaining best approximations
to elements in a normed space by elements in the vector sum of two
subspaces. In its simplest form, the description goes as follows: Let U and V'
be subspaces of a normed space X. Suppose that there exist proximity maps
P: X> U and @Q: X - V. That means that for all x, ||x — Px|| = dist(x, U)
and |[|x — Qx| = dist(x, ¥). Starting from any x,E€ X, one computes x, =
Xo— Pxy, X;=x;,—0x;, X3=x,—Px,, and so on. Under favorable
circumstances, the sequence {x,} converges to a point z such that x,—zis a
best approximation to x, in U + V.

The alternating method apparently originated in 1933 with von Neumann
[7]- For a recent survey of the subject see Deutsch’s article [2].

In 1951, Diliberto and Strauss [3] showed that the method produces best
approximations (in the supremum norm) to a function x€ C(S X T) by a
function of the form u(s) + v(t), with u € C(S) and v € C(T). Certain
aspects of their work were completed by Aumann in [1]. Part of the article
of Golomb [6] deals also with this procedure. A new algorithm of a different
type has recently been discovered by von Golitschek [5]. In a recent article
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[4], Dyn has shown that the alternating method fails to produce best approx-
imations of the form

x(8, £) = uy(s) + tuy(s) + v(2)

with x € C[0, 1]%, », € C[0, 1], v € C[0, 1].
On the other hand, there exist, in a space C(S X T), subspaces of the form

W=CS)®H+G® C(T)

for which the algorithm succeeds. See [9] for the construction of such
subspaces, even in cases where G or H are infinite-dimensional. Thus there is
some interest in discovering which subspaces of the form W are favorable for
the application of the alternating approximation method. We have used the
methods of Dyn to prove the following result:

THEOREM. Let I be a compact interval on the real line. Let G and H be
nonzero finite-dimensional Haar subspaces in C(I). If one (or both) of these
subspaces has dimension 2 or greater, then the alternating algorithm fails in
C(I*) when applied to the pair of subspaces G ® C(I) and C(I) ® H.

Proof. Let n=dim(G) and m = dim(H). We may assume that n > m and
n > 2, The proof divides into two cases according to whether m=1 or
m> 1.

The Haar property for G states that no element in G except 0 can vanish
at n or more points of I. Equivalently, if s,,..., s, are distinct points of 7, then
the corresponding point functionals §,..., §, form a basis for the algebraic
dual G*. For s €1 and x € C(I) we write §(x) = x(s). The notation @ 1 G
signifies that @ is a continuous linear functional on C(S) and ®(g)=0 for
all g€ G

Case I, n>m>2. Select 5, <:---<s,,;in 7 and ¢, <. <, ;in I,
Define f(s;, t;) = (—1)'*/ except for these 9 points, where f(s;, #;) = O:

Gresti)y Guissti)s Gprista)y Sni2sta)s (53583)

S1stmea) istmas)s Gaslmiz)d S2slmis)

At all other points in I X I we require only | f(s, )| < 1.

By the theorem of Chebyshev characterizing best approximations, the best
approximation to f(-,¢) in G is O for i=1,..,m + 3. Likewise, the best
approximation to f(s;, -} in H is 0 for j = 1,..., n + 3. The alternating method
is therefore unable to produce an approximation to f better than 0.
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The pattern of critical points for fis illustrated for the case n =4, m = 3.

S, S, S3 S, S5 S¢ S,

o+ - + -

t2“+'_+ -
t3‘+‘— _+"‘+
iy - + — + — + -
ts + - + - 4
6 -+ - + -

Now it is to be shown that there exists an approximation of f better than
0. This is proved by contradiction. Assume that 0 is a best approximation of
f from the subspace W =G ® C(I) + C(I) ® H. By Singer’s characterization
theorem for best approximations [8, p. 5], there must exist a nonzero linear
functional @ annihilating W, having support in the set of critical points for f;
and extremal for f. Since f has only a finite number of critical points, ¢ must
have the form

3
w

+3 n+

=1 1 Al

pa—

=1 J=

~

in which A4;,=0 whenever (s;,¢#) is not a critical point of f. Since @
annihilates W, each “row functional”

n+3
N 4,8 (1€ig<m+3)

—

~

must annihilate G, as is easily proved. By the Haar property of G, if any row
of the matrix 4 contains 3 zeros, then that row must be 0. By the Haar
property of H, if any column of A contains 3 zeros, then that column is 0.
By applying this argument repeatedly, we conclude that if either row 1, row
2, column 1, or column 2 contains 3 zeros, then 4 = 0. Hence we assume
that in these rows and columns, 4;; =0 if and only if (s;, #;) is not a critical
point of f.

From the Haar property of H, we conclude that the first and second
columns of A are proportional. In particular 4,,4,,=4,,4,,. But a
consideration of the first two rows of 4 now will lead to a contradiction.
Indeed, the functional

n+3
A= z (AZIAIj—AllA2j)§j

j=1

is nonzero, is supported on n points, and annihilates the n-dimensional Haar
space G, which is impossible.
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Casell, n>m=1. In this case, select 5, <---<s,,, in I and
t, < --+ <ty in I. Define f(s;, t;) = (—1)"*/ except for these special points:

SGur1st) = f(Sniast) =405 1) =0

SGni1s2) =100 1) = f(8,13, 1) =0

SGnia )= (D" = (5,00, 03)
S 5) =182, 13) =f(5n13, 1) =0
S615 1) =S5, 8) = f(5,44: 1) = 0.

At all other points of I X I, | f(s, )] < 1. The rest of the argument is similar
to the one given for Case L.

Remarks. The theorem can be generalized so that the domain of fis a set
S X T with S/ and T < I. The proof given above requires that S and T
contain certain minimum numbers of points, namely

#T >34+ m, #S > 5 4+ n — min(m, 2).

A separate proof, not given here, shows that the requirement on T can be
weakened to

#T >4 + m — min(m, 2).
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